You are given an array of n integers, ar = ar[0], ar[1], …, ar[n - 1], and a positive integer, k. Find and print the number of (i, j) pairs where i < j and ar[i] + ar[j] is divisible by k.
For example, ar = [1,2,3,4,5,6] and k = 5. Our three pairs meeting the criteria are [1,4],[2,3] and [4,6].
Function Description
Complete the divisibleSumPairs function in the editor below. It should return the integer count of pairs meeting the criteria.
divisibleSumPairs has the following parameter(s):
- n: the integer length of array ar
- ar: an array of integers
- k: the integer to divide the pair sum by
Input Format
The first line contains 2 space-separated integers, n and k. The second line contains n space-separated integers describing the values of ar[ar[0], ar[1],…,ar[n-1]].
Constraints
- 2 <= n <= 100
- 1 <= k <= 100
- 1 <= ar[i] <= 100
Output Format
Print the number of (i, j) pairs where i < j and a[i] + a[j] is evenly divisible by k.
Sample Input
1 | 6 3 |
Sample Output
1 | 5 |
Explanation
Here are the 5 valid pairs when k = 3:
- (0,2) -> ar[0] + ar[2] = 1 + 2 = 3
- (0,5) -> ar[0] + ar[5] = 1 + 2 = 3
- (1,3) -> ar[1] + ar[3] = 3 + 6 = 9
- (2,4) -> ar[2] + ar[4] = 2 + 1 = 3
- (4,5) -> ar[4] + ar[5] = 1 + 2 = 3
Solution
1 | // Complete the divisibleSumPairs function below. |